Sources of Br_y and I_y in the TTL & LS: Constraints from recent DOAS aircraft observations of BrO and IO

<u>Rainer Volkamer</u>, T. Koenig, B. Dix, E. Apel, E. Atlas, R. Salawitch, L. Pan, S. Baidar and the TORERO and CONTRAST Science teams

- 1. Instrumentation
- 2. TORERO & CONTRAST measurements of BrO and IO
- 3. Relevance: Tropospheric halogens impact O_3 lifetime, oxidize mercury and HO_x over the full tropical air column.
- 4. Br_y sources: Sea-salt, VSL, aerosol chemistry/dynamics?

Funding: NSF-CAREER, NSF-AGS, NASA, EPRI

Relevance of Chlorine, Bromine, Iodine

Hossaini et al., 2015 Murphy et al., 2000 GRL

- Bromine dominates over Chlorine and Iodine in UTLS
- Aerosols in LS are enhanced in bromide and iodide

Previous measurements of bromine in the TTL and LS GEOSCCM **GEOS-Chem - TORERO Includes Bry from VSL**

Dorf et al., 2008; Liang et al., 2014

Includes Bry from VSL

Wang et al., 2015

Much of our understanding about Br, in the UTLS is based on measurements downwind of terrestrial convection

Tropospheric Chemistry of Halogens

CU-AMAX-DOAS instrument aboard NSF/NCAR GV

University of Colorado Airborne Multi-AXis **Differential Optical Absorption Spectroscopy**

inclinometer

zenith, nadir

card

Telescope pylon

Wang et al., 2015 PNAS

BrO and IO detection SH tropical troposphere

tWPO – BrO VCD NH tropics: (1.6 ± 0.6) x10¹³ (CONTRAST RF03, 04, 07, 15)

Koenig et al., 2016, in prep.

tEPO – BrO VCD (molec cm⁻²) NH/SH tropics: (1.5 ± 0.3) x10¹³ (TORERO RF01, 04, 05, 12, 14, 17)

Volkamer et al., 2015 AMT Wang et al., 2015 PNAS

BrO and IO profiles in the tropics & subtropics

- Downwind of maritime convection tropospheric BrO is elevated, and 2-4 times higher than predicted.
- Sea-salt sources influence Br_y and inorganic ocean sources influence I_y in the TTL (and LS?)
 Wang et al., 2015 PNAS

BrO comparison with previous studies in the tropics

Aircraft: 1-2 x10¹³ molec cm⁻² (Volkamer et al., 2015; Wang et al., 2015)

Satellite: 1-3 x10¹³ molec cm⁻²

(Chance et al., 1998; Wagner et al., 2001; Richter et al., 2002; Van Roozendael et al., 2002; Theys et al., 2011)

Ground : <0.4-3 x10¹³ molec cm⁻²

(Leser et al., 2003; Hendrick et al., 2007; Theys et al., 2007; Coburn et al., 2011; 2016)

Balloon: 0.2-0.3 x10¹³ molec cm⁻²

(Pundt et al., 2002; Schofield et al., 2004, 2006; Dorf et al., 2008)

Models: 0.2-1.0 x10¹³ molec cm⁻²

(von Glasow et al., 2004; Yang et al., 2010; Theys et al., 2011; Saiz-Lopez et al., 2012; Parrella et al., 2012;Long et al., 2014) - in the tropics

"A reassessment of Br_y and I_y in the UTLS is needed"

Volkamer et al., 2015

Potential implications of iodine injections into the LS

Saiz-Lopez et al., 2015; Volkamer et al., 2015

0.15 pptv IO in the lower TTL suggest that 0.25–0.7 pptv I_y can be injected into the stratosphere via tropical convective outflow. The accepted WMO upper limit suggests <0.15 pptv I_y CONTRAST RF15: TTL into mid-latitude LS - Western Pacific Br_v in the UTLS exhibits a minimum in the aged TTL (360 K)

Br_v (pptv)

Convective TTL

 2.8 ± 0.9 pptv Br_v 2-7 pptv Br_v

CONTRAST RF15: TTL into mid-latitude LS - Western Pacific IO detected in the LS –I_v decreases from TTL into LS

Summary & Conclusions

- We have detected BrO and IO in the TTL and n first time over the tEPO and tWPO.
- Inorganic Br, and I, are abundant throughout
 - Unaccounted Br_y (probably from sea salt) adds up Influences of inorganic halogen sources are unde

 - IO over the Western Pacific is consistent with ou Pacific (Volkamer et al., 2015; Wang et al., 2015;
- Iodine was detected in the lower stratosphere
 - The amount of inorganic I_y injected into the strate higher than WMO estimate ~0.26 pptv I_y .
- tWPO: complex structure of Br_v and I_v from TT
 - How much iodine and bromine is partitioning to
 - The halogen budget in the LS is not closed due t from LS

Acknowledgement: NCAR/EOL, TORERO & CONTRAST science teams

NSF

Acknowledgements

Instrume nt/Model	Parameters used to constrain box model	PI and Co-I
ΑΜΑΧ	BrO	T. Koenig, R. Volkamer, S. Baidar, B. Dix
HARP	Photolysis Rates	S. Hall, K. Ullmann
TOGA	Propane, Isobutane, n- Butane, HCHO, CFC-11, Benzene	E. Apel, N. Blake, A. Hill, R. Hornbrook
AWAS	Ethane, Propane, Isobutane, n-Butane, CFC- 11, Benzene	E. Atlas, S. Schauffler, V. Donets, R. Lueb, M. Navarro
ISAF	НСНО	T. Honisco, G. Wolfe, D. Anderson
Chemilumine scence	NO, NO ₂ , O ₃	A. Weinheimer
VUV	CO	D. Reimer
PICARRO	Methane	D. Reimer
UHSAS	Aitken mode aerosol surface area	M. Reeves
GV	Pressure, temperature, water, location	T. Campos, P. Romashkin
Project/Gen eral		L. Pan, R. Salawitch, S-Y. Wang, S. Honomichl, P.

Relevance of bromine and iodine ?

- MBL: up to 45% of ozone loss is due to halogens
- Mostly due to iodine \rightarrow Br : I : (I+Br) = 0.3 : 1 : 1.7
 - BrO + IO -> Br + I + O₂ (Br atom recycling)
 - $-HO_2 + IO \rightarrow OH + I + O_2$ (OH radical recycling)

CAM-Chem model: BrO ~ 0.2ppt IO ~ 0.1 ppt

Atmospheric models remain untested in FT

Saiz Lopez et al., 2012 Parella et al., 2012

Relevance for O₃ loss rates

Bromine and lodine account for 34% of the O₃ loss rate (tEPO)

Wang et al., 2015, PNAS

Double tropopause & tropical flights

SH mid-latitudes

SH subtropics

SH tropics

SH tropics