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Dave Hofmann's contributions

related to the effects of

volcanic eruptions

- balloon observations of stratospheric aerosols
- lidar observations of stratospheric aerosols

- observations of polar stratospheric clouds

- observations of ozone

- effects of volcanic eruptions on carbon cycle
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Dave Hofmann

I am not an observationalist.

But once I got to
participate in an
observation
program, helping
observe ozone and
aerosols at
McMurdo,
Antarctica in
spring 2004.
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Fig. 1. Schematic drawing of the effects of vol-
canic eruptions on the atmosphere. Silicate par-
ticles fall out relatively rapidly while gaseous
products remain t¢o form aerosol droplets and
possibly alter the ozone distribution, These
perturbations can affect c¢limate through alter-
ations of the atmosphere's thermal structure.

COOLING

Hofmann (1987), Rev. Geophys.
KUTGERS Alan Robock

Department of Environmental Sciences



Less
Upward
IR Flux

Stratospheric aerosols
(Lifetime ~ 1-3 years)

hackscatter

absorption
(near IR)

eterogeneous —
O, depletion

forward scatter

Effects

on cirrus
clouds
More
Tropospheric aerosols Downward

(Lifetime ~ 1-3 weeks) IR Flux

SO, - H,S0,

Robock (2000), Rev. Geophys.
RUTGERS Alan Robock

Department of Environmental Sciences



Mt. Erebus, Sept. 22, 2004




Mt. Erebus, Oct. 3, 2004
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Need for /n s/tu observations

In discussing lidar data ... However, as in all
remote sehsing techniques, data interpretation
in terms of particie properties is subject to
great uncertainty; i.e., aerosol number, size,
and composition (index of refraction) cannot be
determined from such data alone, However, 1In
conjunction with occasional in situ measurements
of particle properties, the technique is very
powerful .

Hofmann (1987), Rev. Geophys.
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*Seventh Climate Diagnostics Workshop of the National
Oceanic and Atmospheric Administration (NOAA), Boulder, 3
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Stratospheric Aerosol Distribution

Aerosol Optical Depth (A=0.55 p.m)
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Press Release

Professor Alan Robock
Department of Environmental Sciences
Rutgers University

Phone: 1-732-932-9478, 1-732-881-1610 (cell)
Fax: 1-732-932-83644
E-mail: robock@envsci.rutgers.edu

__Volcano Erupts: Winter Warming and Summer Cooling Predicted

On__ .20 the  volcano in _ erupted, putting  million tons of SO, into the
stratosphere. This sulfur gas will produce a cloud of sulfuric acid particles that is the largest
since the 1991 Mount Pinatubo eruption. and which will last for several years. Based on the
Pinatubo experience, the observed climatic response to all large tropical volcanic eruptions in the
past, and extensive computer modeling studies conducted since the Pinatubo eruption, it is

possible to make a prediction of the climatic response over the next year.

Prediction: The coming winter of 20 -20  will be warmer than normal by several
degrees Fahrenheit over the central United States and Canada, western Europe and Siberia, and it
will be cooler by several degrees Fahrenheit over northeastern Canada and Greenland, the
eastern Mediterranean, and China. The volcanic particles will heat the lower stratosphere,
producing a change m the atmospheric wind pattern. The winds will blow warm air info some
regions and colder air into other regions more often than normal, producing particular patterns.
The following map, based on what happened in the winter of 1991-92, shows areas where the
climate will be significantly abnormal. The summer will be several degrees Fahrenheit cooler
over most of North America, Eurasia, and Africa.

Predicted Winter Temperature Anomalies
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__Volcano Erupts:
Strong Summer Cooling and Monsoon Failure over Africa and India Predicted

On__ ,20_ the  volcanoin ___ erupted, putting __ million tons of SO, into the
stratosphere. This sulfur gas will produce a cloud of sulfuric acid particles that is the largest
since the 1991 Mount Pinatubo eruption, and which will last for several years. This eruption,
unlike Pinatubo, was at a high latitude, and the climate response will rather resemble that after
the 1783 Laki eruption in Iceland and the 1912 Katmai eruption in Alaska. Based on the
observed climatic response to these large high-latitude volcanic eruptions i the past, and
extensive computer modeling studies conducted in the past several years, it is possible to make a

prediction of the climatic response over the next year.

Prediction: The coming summer of 20 will be colder than normal by several degrees
Fahrenheit over most of North America and Eurasia, but warmer over the Sahel region of Africa.
The Africa and Asian summer monsoon precipitation will be less than normal, and subsequent
river flow in the Nile and Niger Rivers will be reduced for a couple years. This cooling will
reduce the temperature difference between the continents and the oceans, and this is what
normally drives the monsoon. The reduced precipitation and cloudiness over Africa and India
will actually increase the temperature there. The winter over the continents will also be cooler,
but the summer effect will be larger. The following map, based on simulations of the summer
response to the Laki eruption, shows areas where the climate will be significantly abnormal.

Predicted Summer Temperature Anomalies
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Volcanic forcing needed to explain climate change of past

Temperature anomalies (°C)
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CONCENTRATION (parts per million)

380

360

340

320

Atmospheric CO, at Mauna Loa Observatory

1958-1974 Scripps Inst. Oceanography
1974-2006 NOAA ESRL/GMD

1960

1970

1980
YEAR

1990

2000

September 2006



COs CR’OWTH RATE (ppm yr )

SINe LATITUDE
DEGREL [|ATITUDE

il 1y I
/79 81 83 85 87 8% 91 93 95 97 99 01 03
YEAR

Principal investigator: Thomas Conway, NOAA CMDL Alan Robock

RUTGERS

http://www.cmdl.noaa.gov/ccgg Department of Environmental Sciences



Possible causes of interannual CO, variations

- Changes in emissions
- Land use changes

- Unusual atmospheric temperatures or precipitation
(e.g., drought)

- El Niflo and La Nina episodes (affecting ocean sources
and sinks as well as remote effects on land)

- Volcanic eruptions through effects on diffuse
radiation

Hofmann (2004)
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Rate of increase of CO5 in the atmosphere
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Diffuse Radiation from
Pinatubo Makes a White Sky

Photographs by Alan Robock

KUTGERS Alan Robock

Department of Environmental Sciences



.

Broadband solar radiation, Mauna Loa Observatory (19°N)
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Nevada Solar One
64 MW

Solar steam generators
requiring direct solar

Seville, Spain
Solar Tower
11 MW

http://www.electronichealing.co.uk/articles/solar_power_tower_spain.htm http://judykitsune.wordpress.com/2007/09/12/solar-seville/
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Diffuse Radiation Effect

The increased diffuse radiation allows plants to

photosynthesize more of the time, increasing the
CO, sink (Cohan et al., 2002; Gu et al., 2002, 2003;
Farquhar and Roderick, 2003).

In fact, Gu et al. (2003) actually measured this
effect in trees following the 1991 Pinatubo eruption.
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Volcanic eruptions of the past 250 years

Volcano Year of Eruption VEI d.v.i/E, IvVi Latitude
Laki craters [Lakagigar], Iceland 1783 4 2300 0.19 H -
Unknown 1809 6 2000 0.25 L
Tambora, Sumbawa, Indonesia 1815 7 3000 05 L
Cosiguina, Nicaragua 1835 5 4000 0.11 L
Askja, Iceland 1875 5 1000 0.01* H
Krakatau, Indonesia 1883 6 1000 0.12 L
Okataina [Tarawera], North Island, New

Zealand 1886 5 800 0.04 L
Santa Maria, Guatemala 1902 6 600 0.05 L
Ksudach, Kamchatka, Russia 1907 5 500 0.02 H
Novarupta [Katmai], Alaska, United States 1912 6 500 0.15 H
Agung, Bali, Indonesia 1963 4 800 0.06 L
Mt. St. Helens, Washington, United States 1980 5 500 0 H
El Chichén, Chiapas, Mexico 1982 5 800 0.06 L
Mt. Pinatubo, Luzon, Philippines 1991 6 1000 = L
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Northern Hemisphere Temperature Anomalies (°C)
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Conclusions

The effect of enhanced diffuse radiation and less direct
radiation after volcanic eruptions on tree growth may
bias interpretation of tree rings response following
eruptions as being solely records of temperature.

When proxy records of Northern Hemisphere climate
change are corrected for the diffuse effect, there is no
impact on climate change for time scales longer than 20
years. However, it appears that there was a
hemispheric cooling of about 0.6°C for a decade following
the unknown volcanic eruption of 1809 and Tambora in
1815, and a cooling of 0.3°C for several years following
the Krakatau eruption of 1883.
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N-]TGE RS Department of Environmental Sciences



Are volcanic eruptions an
innocuous example that can be
used to demonstrate the safety
of geoengineering?

No:
- ozohe depletion

- reduction of precipitation, particularly the
Asian and African summer monsoon,
threatening the food supply of billions

- reduction of direct radiation for solar power
- no blue skies (but nice sunsets)
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London Sunset After Krakatau
4:40 p.m., Nov. 26, 1883

Watercolor by William Ascroft
Figure from Symons (1888)
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