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The HATS group has used a three-channel gas chromatograph with electron capture detectors 
(GC-ECD) nicknamed “Otto” in the analysis of air samples collected in stainless steel and glass 
flasks from globally distributed sites since 1995. Analyzed peaks include N2O, SF6, CFC-11, 
CFC-12, CFC-113, CH3CCl3 and CCl4.  Otto’s sampling protocol involves alternating injections 
between atmospheric flask samples and calibration gases stored in high-pressure cylinders called 
“standards”. After interpolating standard-gas (“S”) responses to the injection times for flask-air 
(“A”), a quick estimate of the atmospheric concentration can be obtained from 
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Here, C and R, respectively, are the concentration of, and GC system response to, the sample 
sources signified by the subscripts. This simple formula relies on a single standard to estimate 
the response function of the GC with a line through [CS, RS] and [0, 0]. Another way of thinking 
about (1) is that the atmospheric concentration can be estimated by multiplying the standard-gas 
concentration by the standard-gas-normalized flask-air response. This simple method can offer 
good quality CA estimates when the true response function is a straight line. Otherwise, CA must 
be very close to CS. In practice, GC-ECD response functions often show some evidence of 
curvature, and the distance between CA and CS changes with the flask sampling location and at 
the rate of the overall atmospheric trend during a standard’s duty cycle.  
 
When the response function is not a straight line, a better local estimate of dC/dR in the vicinity 
of CA can be obtained with the addition of a second standard. In a world of perfect 
measurements, we would ideally want the concentration of both standards to be as close to CA as 
possible in order to create a perfect tangent line to the response curve at CA. In the world of noisy 
measurements, this would only create a virtual pivot point about which the local dC/dR estimate 
would fluctuate wildly. So efforts are made to separate the second standard by an optimal 
distance that nicely balances the competing goals of reducing the noise of the dC/dR estimate to 
acceptable levels while still keeping the standard-gas concentrations close enough to CA to give 
an adequately local estimate of dC/dR.  
 
All of our tertiary standards are filled with background air at Niwot Ridge, CO, and our approach 
with all two-standard GC systems, including Otto, is to have one standard (“S2”) holding 
background air and the other standard (“S1”) holding background air diluted with ~10% “zero 
air” – a typical mixture of N2, O2, and Ar scrubbed of other contaminants. Alternating between 
flask-air and standard-gas injections and further alternating standard-gas injections between S1 
and S2 now allows a second estimate of CA using a two-standard formula: 
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The second standard also allows an additional estimate of CA from (1).   
 
With precise measurements, all three estimates would agree when the response function is a 
straight line. In practice, the three estimates almost never agree, not only because GC-ECD 
response functions tend to be curved and measurements tend to be noisy, but also because GC 
responses are influenced by systemic biases that manifest differently from one GC to the next. 
Moreover, biases often arise from trace contaminants that vary from one standard to the next. 
 
The tertiary standards used by Otto are defined in reference to calibration scales derived from 
secondary standards analyzed in our Standards Lab on a separate GC-ECD system. (The 
secondary standards are defined in reference to primary calibration scales derived from valuable 
gravimetric standards that are used more sparingly.) Unlike Otto, the Standards GC generates a 
calibration scale by running a polynomial fit through its normalized responses to a broad range 
of concentrations from secondary standards such that any response biases associated with the 
individual secondary standards are smoothed over by the fit. In contrast, the finite differencing 
scheme embedded in (1) and (2) exposes CA estimates from the two-standard Otto system to the 
full effects of all systemic response biases and random measurement noise specific to Otto and 
the tertiary standards it uses. These biases have the potential to significantly distort the dC/dR 
estimates of (1) and the much more local dC/dR estimates of (2) even more so.  
 
In an effort to improve this situation, a method was developed for modifying (1) and (2) to 
incorporate information derived from a systematic review of all standard-gas measurements 
throughout Otto’s history. In effect, this method extends Otto’s calibration scales beyond the two 
standards being run at any given time by using the measurements from all standards to estimate 
and account for a) the curvatures of Otto’s various peak response functions, and b) any response 
biases that may be associated with the individual standards. We began reporting flask GC-ECD 
measurements from Otto using this reduction method in 2009. 
 
Before any standards-specific bias adjustments can be derived, a quantitative assessment of the 
curvatures of Otto’s response functions is required. Since response tends to float around over 
time even for well-controlled GCs, we will use Otto’s standard-gas responses to normalize each 
other and compare how the normalized response – i.e. the response ratio – varies in accordance 
with the ratio of concentration values determined using the Standards GC. Figure 1 (figures are 
at the back end of this document) shows an historical time series of S1/S2 response ratios for 
CFC-113 from standards injections on Otto. Over much of this series, the concentration ratio 
lines are separated from the median response ratio lines in rough proportion to their distance 
from unity, a clear sign of response function curvature.  
 
Looking ahead, it will be desirable to extend this initial set of ratios while maximizing the 
linkages between them. When standards are cycled on and off one at a time, each standard is 
partnered with at least two others to produce an interconnected system of directly measured 
response ratios. With some awareness of the overall trend across an atmospheric time series, 
flask-air samples from individual stations may be used as common – though admittedly non-
constant/trending – normalizing parameters to indirectly derive mean response ratios between 
sequentially adjacent standards. This process involves finding a Si/Sj response ratio that will 
bring adjacent A/Si and A/Sj response ratio series into appropriate alignment consistent with the 



overall atmospheric trend (here, the i and j subscripts designate arbitrary standards, as signified, 
for example, by the identifier codes shown in figure 1). Such estimates are vulnerable to the 
introduction of subjective bias. However, the availability of flask-air samples from multiple 
stations helps to mitigate this concern by making the process less selective and more statistical. 
The end effect is to extend the interconnections across the entire set of standards by bridging 
across transitions where both standards were cycled simultaneously. Finally, response ratios 
between standards far removed in time can also then be indirectly estimated by methodically 
multiplying through chains of more directly measured ratios so that all but two standards at the 
endpoints cancel out. The final result will be a single interconnected system of tertiary standards, 
where each standard is involved in a ratio expression with every other standard. In the case of 
CFC-113, these response and concentration ratios are plotted along with their inverses in figure 
2a after logarithmic transformation to balance the opposing lobes. 
 
Because of the symmetry between the lower left and upper right quadrants of figure 2a, a linear 
fit through the data will always pass directly through the origin and take the form of a simple 
slope with zero intercept. The curvature of the CFC-113 response curve is gauged by the 
deviation of this slope from 1. Since we are interested in estimating concentration as a function 
of GC response, the response ratio was placed on the x-axis and the concentration ratio on the y-
axis. Within this orientation, a slope > 1 is indicative of a flattening response function for a sub-
sensitive GC becoming less responsive as concentration increases. Conversely, a slope < 1 would 
be indicative of a steepening response function for a super-sensitive GC becoming more 
responsive as concentration increases. A slope ≈ 1, meanwhile, would signify an essentially 
linear response function for an optimally sensitive GC.  
 
The spread of the data about the fitted line is assumed to correlate primarily with the presence of 
systemic biases in Otto’s response to the individual standards, although it may also to some 
extent reflect errors in the concentration values determined for the standards using the Standards 
GC. Such errors would presumably result from small biases in the Standards GC’s response to 
the same tertiary standards. These biases may result from random noise in the measurements, or 
they may originate from transient, systemic errors that migrate through the GC over time. It has, 
for example, been observed that small but significant differences between concentration 
estimates for the same tertiary standard may appear when new samples are injected on the 
Standards GC after an interval of several days. Finally, the Standards GC, like Otto, is an 
autonomous system. It columns, detectors, and other components, and its program for controlling 
the flow of samples through the system are unique to itself, and the chromatograms it produces 
have their own unique features that are distinct from those of Otto. We should therefore not 
expect Otto’s measured responses to these standards to be precisely consistent with the 
concentrations determined using the Standards GC. 

 
To compensate for standards-specific response biases, two approaches are available: 1) derive a 
set of standards-specific proportionality constants (i.e. multiplication factors) that adjust Otto’s 
drifting response to the standards to be more consistent with the concentrations defined by the 
Standards GC; or 2) derive a set of constant offsets that adjust the standards concentrations to be 
more consistent with the response values from Otto. For reasons that will not be detailed here, 
the second approach is less complicated to execute. Be cautioned, however, that while adjusting 
the standards concentrations might seem to imply that the Standards GC is the primary source of 



bias – just as adjusting Otto’s responses to its standards might likewise seem to imply that Otto is 
the primary source of bias – in truth both sources are inextricably combined and compensated for 
by either approach. So, while we will be deriving adjustments for the standards concentrations, 
the results will certainly not be exclusively reflective of the quality of the tertiary standards 
concentrations defined by the Standards GC. They may, in fact, be significantly more reflective 
of Otto’s unique response characteristics, but in any case, this technique will not distinguish 
between the two influences. We have chosen to adjust the standards concentrations simply as a 
matter of convenience. 
 
The following is an equation describing any single data point shown in figure 2a in terms of the 
fitted line: 
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where m is the slope of the fit and ijε̂  is the residual of the concentration ratio for standards i and 
j. We want to find a pair of standard-gas concentration offsets, δi and δj, that will make the 
residual go away:	
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Exponentiating (4) and rearranging terms gives an expression of the following linear form: 
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where 
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Since each standard is involved in a ratio expression with every other standard, the concentration 
offset determined for any single standard is required to satisfy multiple expressions of (5) 
simultaneously. The resulting linear system has nstd unknown δ values, and 
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ratio expressions: 
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Note	that	A	is	a	sparse	matrix	with	only	two	nonzero	coefficients,	ai	and	aj,	on	each	row.		



Least	squares	solutions	to	overdetermined	linear	systems	of	this	sort	are	attainable	via	the	
singular	value	decomposition	of	A	(see,	for	example,	Press	et.	al.,	section	2.6)	to	produce	a	
trio	of	component	matrices:	
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A =U ⋅W ⋅VT 		 	 	 (7) 
 
Here, U is column orthogonal and dimensioned identically to A (neqn x nstd), V is also 
orthogonal but square (nstd x nstd), and W is the nstd x nstd diagonal matrix of singular values 
(the columns of U and V are said to hold the left-hand and right-hand singular vectors of A). All 
three are easily inverted – by taking the transpose of the orthogonal matrices U and V, and by 
simply inverting the diagonal values of W. A solution that minimizes the size of the residual 
vector, 
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A ⋅ x −b , and the size of the solution vector itself, 
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x , is computed from  
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x = V ⋅W−1 ⋅ UT ⋅b( )     (8) 
 
An examination of (5) will reveal that 
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A ⋅ x −b  can be minimized all the way to zero when 

€ 

δ = −C  so that 
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C + δ = 0. A consequence of this is that there will always be a solitary singular 
value on the diagonal of W that is several orders of magnitude below the rest. This isolated 
singular value dwarfs the others when W is inverted, and it must be zeroed out prior to the 
computation of x by (8) to block a linear combination that ignores the ratio data and pushes the 
result toward this exact, but trivial, solution (refer again to Press et. al. section 2.6). The 
alternative result will ideally be a set of much smaller δ values that are more or less evenly 
distributed about zero (figure 2b). 
 
Ideal outcomes are commonly precluded when one or more δ values stands out in terms of its 
magnitude. The balancing mechanism implied by the minimization of 

€ 

x  then pushes the other δ 
values toward the opposite side of zero. To prevent these discordant standards from biasing the δ 
values derived for their more congruent counterparts in this fashion, it will be necessary to 
remove them from the linear system and solve again. Care must also be taken at the outset to 
identify and remove from the system standards that show signs of such significant instability 
during their duty cycles that they would ultimately be ignored in the final analysis. In figure 2, 
the two S2 standards at the endpoints have been removed from the linear system, along with the 
first two S1 standards and S1 standard 52750a, and all ratio data and estimated offsets associated 
with these standards have been marked with gray circles. 
 
With the subset of high-quality standards that remains, the initial set of δ values can be used to 
derive “precisions” to weight the Ci/Cj ratios in figure 2 and refit with a new line. The new fit 
will produce a different set of residuals to be compensated for with a new set of δ values. This 
process can be iterated until the fit converges on a slope that is weighted toward ratios of the 
highest-quality standards with the smallest δ values. (Note: be careful to set a floor precision on 
the concentration ratios – the median value, for example – to prevent the fit from quickly homing 
in on a single concentration ratio relating the two standards whose δ values are closest to zero at 
the initial iterative step.) When the slope of the fit is finalized, δ values for those isolated 
standards with large or unstable response biases can be estimated directly from (5) using ratio 
expressions in which they participate with high-quality standards that already have δ values. 



These finalized parameters can be used to amend (1) and (2) for the recomputation of 
atmospheric concentrations from the Otto measurements. After appropriately transforming (4), 
the new single-standard estimating function becomes 
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ˆ C A = CS + δS( ) RA RS( )m    (9) 
 
Here, m adjusts the standard-gas-normalized flask-air response to compensate for the curvature 
of the response function, and δS adjusts CS to a value that better conforms with RS in 
consideration of Otto’s aggregate response to all of its standards. The new two-standard function 
comes simply from adding δS1 and δS2 to the S1 and S2 concentration values: 
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When δS1 and δS2  are of significant proportion relative to CS2 – CS1 and of opposite sign, they 
can have a sizable impact on the localized dC/dR estimate from (10). 
 
Accordingly, m and the δ values derived from the entire set (or high-quality subset) of Otto 
standards carry information from that larger set to every measurement on what is otherwise a 
two-standard system. As long as the δ values for the high-quality set of standards are fairly 
evenly distributed about zero, then the overall time series of atmospheric measurements from 
Otto will remain consistent with the calibration scale for tertiary standards set by the Standards 
Lab. CFC-113 concentrations of flask-air samples from Mauna Loa analyzed on Otto and 
estimated using equations (1), (2), (9) and (10) are shown in figure 3 to demonstrate the level of 
convergence achieved between estimates based on the amended versions of the single-standard 
(with S1 and S2 used independently) and two-standard functions.  
 
To facilitate a brief discussion of figure 3, single-standard flask-air estimates from equation (1) 
that are referenced to the S1 standards will be referred to as the S1-cal calibration, 
single-standard estimates from equation (1) that are referenced to the S2 standards will be 
referred to as the S2-cal, and two-standard equation (2) estimates will be referred to as the S1-S2-
cal. Estimates from equations (9) and (10) will be referred to in likewise fashion as the S1-cal+, 
the S2-cal+, and the S1-S2-cal+ calibrations.  
 
In figure 3, the pale-green S1-S2-cal dots are sized small to enhance the visibility of the larger 
pale-blue S2-cal dots that are largely hidden beneath them. The overlap is a manifestation of the 
atmospheric concentrations being much closer to the background S2 concentrations than to the 
diluted-background S1 concentrations. This mitigates the effect of response function curvature 
on the S2-cal and places heavier emphasis on the S2 reference point in the S1-S2-cal. In contrast, 
the greater relative distance between the atmospheric and S1 concentrations amplifies the S1-cal 
error that is due to response function curvature and promotes the tendency for the S1-cal (pale-
red dots) to underestimate the S2-cal and S1-S2-cal. Also, even with the close proximity between 
flask-air and S2 concentrations, we still see significant shifts in the S2-cal and S1-S2-cal 
estimates at S2 transitions. These shifts are predominantly related to varying biases in Otto’s 
response to these standards.  



 
All of these distortive effects are nicely compensated for by the addition of m and the δ values to 
the estimating functions. From 1999 onward, most of the difference between the S1-cal and the 
S1-cal+ is accounted for by m, with only relatively small δS1 having been derived for these 
standards (unstable S1 standard 52750a excepted). In contrast, the impact of m on the S2-cal+ is 
minimized by the similarity between the atmospheric and S2 concentrations, while the relatively 
large δS2 account for most of the difference between the S2-cal and S2-cal+. The δS2 also account 
for most of the difference between the S1-S2-cal and the S1-S2-cal+ due to the heavier emphasis 
placed on the S2 reference point. Any remaining disagreements are directly tied to the instability 
of Otto’s responses to its standards, which is generally very mild with notable exceptions. The 
level of agreement achieved between the amended estimates allows these exceptions – S1 
standard 52750a and S2 standard 73157 – to be more easily excluded from the final analysis in 
favor of their more competent, opposite partners. 
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Figure 1. S1/S2 ratios of CFC-113 responses from standards injections on Otto (black pluses). 
Individual values are obtained by interpolating responses from alternating injections. For 
illustrative clarity, these data have been filtered to remove the noisiest values.  Dashed, blue 
vertical lines mark transitions between background S2 standards with blue ID #s listed across 
the top; dashed, red vertical lines mark transitions between diluted-background S1 standards 
with red ID #s listed across the bottom; dashed, gray vertical lines indicate where both 
standards were cycled simultaneously. Horizontal orange lines show the median S1/S2 response 
ratios for concurrently-running standard pairs, while horizontal purple lines show the associated 
S1/S2 ratios of concentrations determined by the Standards Lab. Meandering response ratios 
spanning the year 2005 and since very early in the year 2012 are respectively related to 
significant instabilities in Otto’s response to S1 standard 52750a and S2 standard 73157. 



 
 
Figure 2. CFC-113 concentration ratios versus median response ratios from Otto standards 
after logarithmic transformation (A). All possible standard pairs are represented twice in 
inverted forms. The solid orange line represents a weighted linear fit to the data depicted as 
black plus marks, with the dashed, purple 1 to 1 line provided for reference. The deviation of the 
slope from 1 quantifies the magnitude of the curvature in Otto’s response function. A set of 
standards-specific bias adjustments in the form of constant offsets to the standards 
concentrations is derived in an iterative fashion (refer to text) via equation (6) to compensate for 
the residuals of the fit (B). The gray circles in both panels mark data points associated with 
standards that were withheld from equation (6). 52750a and 73157 were withheld because of 
their instability, while 39990, 39777, and 59975 were withheld due to the relative magnitude and 
general discontinuity of their offsets in comparison with those of the remaining standards. 
Offsets for these withheld standards were determined using equation (5) after the fit was 
finalized. 



 
 
Figure 3. CFC-113 concentrations at Mauna Loa computed six different ways. Transitions 
between standards are depicted as in figure 1. Standards concentrations of CFC-113 as 
determined by the Standards Lab with and without the bias adjustments of figure 2 added are 
respectively depicted by the horizontal solid and dotted lines spanning the standards’ duty 
cycles. Pale-red dots show CA estimates computed via equation (1) with respect to the diluted-
background S1 standards. Pale-blue dots show those computed via equation (1) with respect to 
the background S2 standards. Small, pale-green dots were computed via equation (2) with 
respect to both standards. These data have been filtered of noisy values to facilitate comparison. 
The slope and offsets derived in figure (2) were used to recompute flask-air concentrations using 
the amended estimating functions of equations (9) and (10). Soft loess curves were fit through the 
new estimates and are represented by analogously colored lines of varying thickness to enhance 
their visibility and comparison with each other and with the original estimates of equations (1) 
and (2). With exceptions made for estimates based on unstable standards 52750a (S1) and 73157 
(S2), the controversies have essentially been eliminated. 
 


